A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination

نویسندگان

  • Sandra Muñoz-Galván
  • María García-Rubio
  • Pedro Ortega
  • Jose F Ruiz
  • Sonia Jimeno
  • Benjamin Pardo
  • Belén Gómez-González
  • Andrés Aguilera
چکیده

Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and prevents not only transcription-induced replication fork stalling but also transcription-associated hyper-recombination. This led us to explore the possible role of Rrm3 in the repair of DSBs when originating at the passage of the replication fork. Using a mini-HO system that induces mainly single-stranded DNA breaks, we show that rrm3Δ cells are defective in DSB repair. The defect is clearly seen in sister chromatid recombination, the major repair pathway of replication-born DSBs. Our results indicate that Rrm3 recruitment to replication-born DSBs is crucial for viability, uncovering a new role for Rrm3 in the repair of broken replication forks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid

DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister ...

متن کامل

Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination

While regulating the choice between homologous recombination and non-homologous end joining (NHEJ) as mechanisms of double-strand break (DSB) repair is exerted at several steps, the key step is DNA end resection, which in Saccharomyces cerevisiae is controlled by the MRX complex and the Sgs1 DNA helicase or the Sae2 and Exo1 nucleases. To assay the role of DNA resection in sister-chromatid reco...

متن کامل

Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication

Homologous recombination (HR) is the major mechanism used to repair double-strand breaks (DSBs) that result from replication, but a study of repair of DSBs specifically induced during S-phase is lacking. Using an inverted-repeat assay in which a DSB is generated by the encountering of the replication fork with nicks, we can physically detect repair by sister-chromatid recombination (SCR) and in...

متن کامل

Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange.

Molecular studies on double-strand break (DSB) repair in mitosis are usually performed with enzymatically induced DSBs, but spontaneous DSBs might arise because of replication failures, for example when replication encounters nicks. To study repair of replication-born DSBs, we defined a system in Saccharomyces cerevisiae for the induction of a site-specific single-strand break. We show that a 2...

متن کامل

The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana.

Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is esse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017